Revista ELECTRO
Vol. 44 – Año 2022
Artículo
TÍTULO
Aprendizaje Cooperativo Multiagente
AUTORES
Márquez Gutiérrez Pedro Rafael, Ferreiro Salvatierra Brenda Sofía, Mingura Erivez Diego, García Mata Carmen Leticia
RESUMEN
Los sistemas cooperativos multiagente son aquellos en los que varios agentes intentan, a través de su interacción, resolver tareas conjuntamente o maximizar una utilidad. Debido a las interacciones entre los agentes, la complejidad del problema multiagente aumenta rápidamente con el número de agentes o su sofisticación conductual. El desafío que esto presenta a la tarea de programar soluciones a problemas de sistemas multiagente ha generado un creciente interés en las técnicas de aprendizaje automático para automatizar el proceso de búsqueda y optimización. En este artículo abordamos el trabajo de aprendizaje multiagente en un espectro de áreas, incluyendo el aprendizaje por refuerzo, la computación evolutiva, la teoría de juegos, el modelado de agentes y la robótica.
Palabras Clave: sistemas multiagente, aprendizaje cooperativo, inteligencia artificial, aprendizaje de máquina.
ABSTRACT
Cooperative multi-agent systems are ones in which several agents attempt, through their interaction, to jointly solve tasks or to maximize utility. Due to the interactions among the agents, multi-agent problem complexity rises rapidly with the number of agents or their behavioral sophistication. The challenge this presents to the task of programming solutions to multi-agent systems problems has spawned increasing interest in machine learning techniques to automate the search and optimization process. In this paper we attempt to draw from multi-agent learning work in a spectrum of areas, including reinforcement learning, evolutionary computation, game theory, agent modeling, and robotics.
Keywords: multi-agent systems, cooperative learning, artificial intelligence, machine learning.
REFERENCIAS
[1] S. Dreyfus, 'Richard Bellman on the birth of dynamic programming' Operations Research 50 (1), pp. 48 –51, 2002.
[2] B. Burns, “Designing Distributed Systems: Patterns and Paradigms for Scalable, Reliable Services”, O’Reilly, 2018.
[3] G. Weiss, et al., “Multiagent Systems”, The MIT Press, ISBN: 9780262533874, 2016
[4] M. Wooldridge, “An Introduction to MultiAgent Systems”, 2nd Ed., Wiley, ISBN-10: 0470519460, 2009.
[5] Y. Shoham, “Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations”, Cambridge University Press, ISBN: 0521899435, 2008.
[6] S. Russell & P. Norvig, “Artificial Intelligence: A Modern Approach” 4th Ed., Pearson, ISBN-10: 0134610997, 2020.
[7] N. Jennings, K. Sycara, and M. Wooldridge, “A roadmap of agents research and development”, Autonomous Agents and Multi-Agent Systems, 1:7 –38, 1998.
[8] E. Alpaydin, “Introduction to Machine Learning”, The MIT Press, ISBN-10: 0262043793, 2020.
[9] C. Goldman and J. Rosenschein, “Mutually supervised learning in multiagent systems”, in G. Weiß and S. Sen, editors, “Adaptation and Learning in Multi-Agent Systems”, pages 85 –96. Springer-Verlag: Heidelberg, Germany, Berlin, 1996.
[10] K.A.De Jong, “Evolutionary Computation: A Unified Ap proach”, ISBN-10: 0262529602, A Bradford Book, 2016.
[11] T. Back. Evolutionary Algorithms in Theory and Practice: Evolutionary Straegies, Evolutionary Programming, and Genetic Algorithms. Oxford Press, 1996.
[12] J. K. Bassett. A study of generalization techniques in evolutionary rule learning. Master’s thesis, GeorgeMason, University, Fairfax VA, USA, 2002.
[13] D. Andre and A. Teller. Evolving team Darwin United. In M. Asada and H. Kitano, editors, RoboCup-98: Robot Soccer World Cup II. Springer Verlag, 1999.
[14] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. SFI Studies in the Sciences of Complexity. Oxford University Press, 1999
[15] M. Bowling. Multiagent learning in the presence of agents with limitations. PhD thesis, Computer Science, Department, Carnegie Mellon University, 2003.
[16] O. Buffet, A. Dutech, and F. Charpillet. Incremental reinforcement learning for designing multi-agent systems.
[17] In J. P. Müller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth International Conference on Autonomous Agents, pages 31–32,Montreal, Canada, 2001. ACM Press.
[18] H. Bui, S. Venkatesh, and D. Kieronska. Learning other agents’ preferences in multi-agent negotiation using the Bayesian classifier. International Journal of Cooperative Information Systems, 8(4):275 –294, 1999.
[19] G. Chalkiadakis and C. Boutilier. Coordination in multiagent reinforcement learning: A Bayesian approach, In Proceedings of The Second International Joint Conference on Autonomous Agents & Multiagent Systems (AAMAS 2003). ACM, 2003. ISBN 1-58113-683-8.
[20] R. H. Crites. Large-Scale Dynamic Optimization Using Teams of Reinforcement Learning Agents. PhD thesis, University of Massachusetts Amherst, 1996.
[21] M. R. Cutkosky, R. S. Englemore, R. E. Fikes, M. R. Genesereth, T. R. Gruber,W. S. Mark, J. M. Tenenbaum, and J. C. Weber. PACT: An experiment in integrating concurrent engineering systems. In M. N. Huhns and M. P. Singh, editors, Readings in Agents, pages 46 –55. Morgan Kaufmann, San Francisco, CA, USA, 1997.
[22] A. Garland and R. Alterman. Autonomous agents that learn to better coordinate. Autonomous Agents and Multi-Agent Systems, 8:267 –301, 2004.
[23] A. Greenwald and K. Hall. Correlated Q-learning. In Proceedings of the Twentieth International Conference on Machine Learning, 2003.
[24] Panait, L., Luke, S. Cooperative Multi-Agent Learning: The State of the Art. Auton Agent Multi-Agent Syst 11, 387 –434 (2005). https://doi.org/10.1007/s10458-005-2631-2
[25] A Review of Cooperative Multi-Agent Deep Reinforcement Learning Afshin OroojlooyJadid, Davood Hajinezhad, 2021, https://doi.org/10.48550/arXiv.1908.03963
[26] Distributed Cooperative Multi-Agent Reinforcement Learning with Directed Coordination Graph Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty, Piyush. K. Sharma, 2022 https://doi.org/10.48550/arXiv.2201.04962
[27] Pierre Haou, Multi-Agent Reinforcement Learning (MARL) and Cooperative AI, 2021, https://towardsdatascience.com/ive-been-thinking-about-multi-agent-reinforcement-learning-marl-and-you-probably-should-be-too-8f1e241606ac
[28] Marchetti, T.J, ; García, A.J. Plataformas para Desarrollo de Sistemas Multiagente- Un Analisis Comparativo, https://core.ac.uk/download/pdf/15778237.pdf
CITAR COMO:
Márquez Gutiérrez Pedro Rafael, Ferreiro Salvatierra Brenda Sofía, Mingura Erivez Diego, García Mata Carmen Leticia, "Aprendizaje Cooperativo Multiagente", Revista ELECTRO, Vol. 44, 2022, pp. 34-39.
VERSIÓN PDF