<- Atrás

Revista ELECTRO

Vol. 43 – Año 2021

Artículo

TÍTULO

Clasificación de Imágenes de Histología de Cáncer de Mama Mediante una Red Neuronal Convolucional Ligera

AUTORES

Acosta Lara Iván E., Macías Macías José M., Ramírez Quintana Juan A., Chacón Murguía Mario I., Corral Sáenz Alma D.

RESUMEN

El cáncer de mama es una de las principales causas de muerte de mujeres en todo el mundo, pero el diagnóstico puede brindar tratamiento y cuidado que permita al paciente una mayor calidad de vida. Por ello, el propósito de este artículo es desarrollar una Red Neuronal Convolucional que realice una clasificación automática binaria de imágenes de histología mamaria. Esta red es de bajo costo computacional debido a que trabaja con capas convolucionales divisibles en profundidad en paralelo. Además, se propone un preprocesamiento de imágenes de histología utilizando técnicas como normalización de tinción e intensidad. De acuerdo con los experimentos, se obtienen desempeños mayores al 93% de precisión en la base de datos BreakHis

Palabras Clave: red neuronal convolucional, histología, cáncer de mama.

ABSTRACT

Breast cancer is one of the leading causes of death for women worldwide, but diagnosis can provide treatment and care that allows the patient a higher quality of life. Therefore, the purpose of this article is to develop a Convolutional Neural Network that performs an automatic binary classification of mammary histology images. This network is low computational cost because it works with depth divisible convolutional layers in parallel. In addition, a pre-processing of histology images is proposed using techniques such as staining and intensity normalization. According to the experiments, performances greater than 93% precision are obtained in the BreakHis database.

Keywords: convolutional neural network, histology, breast cancer.

REFERENCIAS

[1] Nacional Cancer Institute, “Cancer Statistics,” Understanding Cancer, 2020. [Online]. Available: https://www.cancer.gov/about-cancer/understanding/statistics. [Accessed: 01-Jul-2021].
[2] World Health Organization, “Breast cancer,” 2021. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/breast-cancer. [Accessed: 09-Jul-2021].
[3] Organización Mundial de la Salud, “Cáncer de mama Title,” Cáncer de mama, 2021. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/breast-cancer. [Accessed: 07-Jul-2021].
[4] The American Cancer Society medical and editorial content team, “About Breast Cancer,” How Common Is Breast Cancer?, 2021. [Online]. Available: https://www.cancer.org/cancer/breast-cancer/about/how-common-is-breast-cancer.html#references. [Accessed: 09-Jul-2021].
[5] Centers for Disease Control and Prevention, “How Is Breast Cancer Diagnosed?,” Breast Cancer, 2020. [Online]. Available: https://www.cdc.gov/cancer/ breast/basic_info/diagnosis.htm. [Accessed: 07-Jul-2021].
[6] A. Al Nahid and Y. Kong, “Involvement of Machine Learning for Breast Cancer Image Classification: A Survey,” Comput. Math. Methods Med., vol. 2017, no. i, 2017.
[7] A. P. Qu et al., “Segmentation of Hematoxylin-Eosin stained breast cancer histopathological images based on pixel-wise SVM classifier,” Sci. China Inf. Sci., vol. 58, no. 9, pp. 1–13, 2015.
[8] S. Chin Neoh et al., “An Intelligent Decision Support System for Leukaemia Diagnosis using Microscopic Blood Images,” Sci. Rep., vol. 5, pp. 1–14, 2015.
[9] M. Z. Alom, C. Yakopcic, M. S. Nasrin, T. M. Taha, and V. K. Asari, “Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network,” J. Digit. Imaging, vol. 32, no. 4, pp. 605–617, 2019.
[10] H. Li, S. Zhuang, D. ao Li, J. Zhao, and Y. Ma, “Benign and malignant classification of mammogram images based on deep learning,” Biomed. Signal Process. Control, vol. 51, pp. 347–354, 2019.
[11] J. Ker, Y. Bai, H. Y. Lee, J. Rao, and L. Wang, “Automated brain histology classification using machine learning,” J. Clin. Neurosci., no. xxxx, 2019.
[12] S. H. Kassani, M. J. Wesolowski, and K. A. Schneider, “Classification of Histopathological Biopsy Images Using Ensemble of Deep Classification of Histopathological Biopsy Images Using Ensemble of Deep Learning Networks,” no. September, 2019.
[13] T. Wen and A. Edelman, “Support Vector Machines: Algorithms and Applications,” pp. 249–257, 2003.
[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016.
[15] C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015.
[16] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2818–2826, 2016.
[17] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-ResNet and the impact of residual connections on learning,” 31st AAAI Conf. Artif. Intell. AAAI 2017, pp. 4278–4284, 2017.
[18] F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “A Dataset for Breast Cancer Histopathological Image Classification,” IEEE Trans. Biomed. Eng., vol. 63, no. 7, pp. 1455–1462, 2016.
[19] M. Macenko et al., “A method for normalizing histology slides for quantitative analysis,” Proc.- 2009 IEEE Int. Symp. Biomed. Imaging From Nano to Macro, ISBI 2009, pp. 1107–1110, 2009.
[20] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms. New York, NY: Cambridge University Press, 2014.
[21] D. Berrar, “Cross-validation,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, pp. 542–545, 2018.
[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: Inverted Residuals and Linear Bottlenecks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 4510–4520, 2018.
[23] C. C. Aggarwal, Neural Networks and Deep Learning. Yorktown Heights, NY: Springer International Publishing AG, 2018.
[24] J. Xie, R. Liu, J. Luttrell, and C. Zhang, “Deep learning based analysis of histopathological images of breast cancer,” Front. Genet., vol. 10, no. FEB, pp. 1–19, 2019.
[25] D. M. Vo, N. Q. Nguyen, and S. W. Lee, “Classification of breast cancer histology images using incremental boosting convolution networks,” Inf. Sci. (Ny)., vol. 482, pp. 123–138, 2019.

CITAR COMO:

Acosta Lara Iván E., Macías Macías José M., Ramírez Quintana Juan A., Chacón Murguía Mario I., Corral Sáenz Alma D., "Clasificación de Imágenes de Histología de Cáncer de Mama Mediante una Red Neuronal Convolucional Ligera", Revista ELECTRO, Vol. 43, 2021, pp. 186-191.

VERSIÓN PDF

(Abrir archivo PDF en una nueva pestaña)