<- Atrás

Revista ELECTRO

Vol. 42 – Año 2020

Artículo

TÍTULO

Identificador de Tortugas en Desove en Sitio

AUTORES

José Ignacio Vega Luna, Mario Alberto Lagos Acosta, Gerardo Salgado Guzmán, Francisco Javier Sánchez Rangel, José Francisco Cosme Aceves, Víctor Noé Tapia Vargas

RESUMEN

En este trabaj o se presenta un sistema de identificación de caparazones de tortugas en desove. El objetivo fue agilizar la colecta de huevos registrando en una base de datos las coordenadas geográficas de la ubicación de desoves para prevenir saqueos. El sistema identif ica los caparazones y huevos de tortugas con una cámara modelo Pixy2 por sus patrones geométrica, se registran midiendo la variación de temperatura en el desove usando una cámara térmica infrarroja. Un vehículo robótico transporta las cámaras en zonas cost eras de playas del Golfo de México, recorri endo área s de desove. Para cada tortuga identificada se registra la hora, fecha y coordenadas de ubicación. El sistema captura y almacena la geolocalización, procesa las imágenes y realiza el control del vehículo robótico usando un microcontrolador embebido Raspberry Pi 2. Se lograron exactitudes del 96.5% en la determinación de las coordenadas y 87% en la identificación de tortugas.

Palabras Clave: cámara térmica infrarroja, desove, Pixy 2, Raspberry Pi 2, tortugas.

ABSTRACT

This paper presents a spawning turtle shell identification system. The objective was to speed up the collection of eggs by registering the geographical coordinates of the spawning location in a database to prevent looting. The system identifies the shells and eggs of turtles with a Pixy2 model camera for their geometric patterns, they are recorded by measuring the temperature variation in spawning using an infrared thermal camera. A robotic vehicle transports the cameras in coastal areas of beaches of the Gulf of Mexico, cross ing spawning areas. For each identified turtle, the time, date and location coordinates are recorded. The system captures and stores the geolocation, processes the images and performs the control of the robotic vehicle using a Raspberry Pi 2 embedded micro controller. Accuracies of 96.5% were achieved in determining the coordinates and 87% in the identification of turtles.

Keywords: infrared thermal camera, Pixy2, Raspberry Pi 2, spawning, turtles.

REFERENCIAS

[1] Y. A. Loukissas, FOREWORD, Boston, MIT Press, 2019, ix-x.
[2] Y. Song, J. Xie, Q. Huang, M. Wang, "Design and Implementation of Turtle Breeding System Based on Embedded Container Cloud", 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2018, 2531-2534.
[3] H. Horimoto, T. Maki, K. Kofuji, T. Ishihara, "Autonomous Sea Turtle Detection Using Multi-beam Imaging Son ar: Toward Autonomous Tracking", IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal, Portugal, 2018, 1-4.
[4] G. Cirelli, A. Pisto, F. Ardolino, A. Colucci, E. Ottone, "Distribution and causes of sea turtles stranding on the Ionian coast of Calabria, Apulia and Basilicata", IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 2018, 178-182.
[5] L. Guegan, N. M. Murad, J. M. Lebreton, "Integrating over sea radio channel for sea t urtles localization in the Indian Ocean", IEEE Radio and Antenna Days of the Indian Ocean (RADIO), Cape Town, South Africa, 2017, 1-2.
[6] A. Anuntachai, N. Pantuwong, "An Image-based Sea Turtle Identification using Postorbital Facial Feature Points Matching T echnique", 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, South Korea, 2019, 1058-1063.
[7] N. Murad, L. Guegan, S. Bonhommeau, "Why satellite localization beacons are not adapted for marine turtles' study: A sea wireless senso rs network solution", Global Information Infrastructure and Networking Symposium (GIIS), St. Pierre, France, 2017, 79-86.
[8] M. MacNicoll, R. Akers, C. Goudey, "Simulation of marine entanglement a software tool used to predict entanglement of leatherback turt les", OCEANS 2017, Anchorage, AK, USA, 2017, 1-8.
[9] A. Zampollo, M. Azzolin, A. Arcangeli, "Employing ferry as platform of observation for monitoring Loggerhead sea turtle (Caretta caretta) distribution in the Adriatic-Ionian Region", IEEE International Work shop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 2018, 140-144.
[10] R. F. Hardy, C. Hu, B. Witherington, B. Lapointe, A. Meylan, "Characterizing a Sea Turtle Developmental Habitat Using Landsat Observations of S urface-Pelagic Drift Communities in the Eastern Gulf of Mexico", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 11(10), Oct. 2018, 3646-3659.
[11] X. Du, B. K. Ghosh, P. Ulinski, "Encoding and decoding target locations with waves in the turtle visual cortex", IEEE Transactions on Biomedical Engineering, Vol. 52(4), March 2005, 566-577.
[12] X. Du, B. K. Ghosh, P. Ulinski, "Encoding of Motion Targets by Waves in Turtle Visual Cortex", IEEE Transactions on Biomedical Engineering, Vol. 53(8), Aug. 2006, 1688-1695.
[13] N. Perera, R. C. Anderson, B. K. Ghosh, "Detection of moving targets in the visual pathways of turtles using computational models", 7th International Conference on Information and Automation for Sustainability, Colombo, 2 014, 1-6.
[14] K. Latifiana, P. Danoedoro, M. As-Singkily, "Spatial Habitat Suitability Modeling of the Roti Snake-Necked Turtle (Chelodina Mccordi) Based on Landsat-8 Imagery and GIS", 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 2081, 1-6.
[15] M. Marra, R. Carlucci, C. Pierri, G. Corriero, "A model of environmental suitability for the conservation of the loggerhead turtle Caretta caretta in the Southern Adriatic and Northern Ionian Sea (Central Mediterranean Sea)", IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 2018, 193-196.

CITAR COMO:

José Ignacio Vega Luna, Mario Alberto Lagos Acosta, Gerardo Salgado Guzmán, Francisco Javier Sánchez Rangel, José Francisco Cosme Aceves, Víctor Noé Tapia Vargas, "Identificador de Tortugas en Desove en Sitio", Revista ELECTRO, Vol. 42, 2020, pp. 196-201.

VERSIÓN PDF

(Abrir archivo PDF en una nueva pestaña)